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SEMICOARSENING AND IMPLICIT SMOOTHERS FOR THE SIMULATION OF A

FLAT PLATE AT YAW�

RUBEN S. MONTEROy, IGNACIO M. LLORENTEz, AND MANUEL D. SALASx

Abstract. This paper presents a full multigrid solver for the simulation of 
ow over a yawed 
at plate.

The two problems associated with this simulation; boundary layers and entering 
ows with non-aligned

characteristics, have been successfully overcome through the combination of a plane-implicit solver and

semicoarsening. In fact, this multigrid algorithm exhibits a textbook multigrid convergence rate, i.e., the

solution of the discrete system of equations is obtained in a �xed amount of computational work, indepen-

dently of the grid size, grid stretching factor and non-alignment parameter. Also, a parallel variant of the

smoother based on a four-color ordering of planes is investigated.
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1. Introduction. The 
ow of a viscous 
uid over a solid obstacle can be divided into two regions of

interest. A very thin layer close to the surface of the body in which the velocity gradient normal to the

surface is very large, and the remaining region where no such gradients occur and the in
uence of viscosity

can be neglected. It can be shown from several exact solutions of the Navier-Stokes equations that the

thickness of the boundary layer is proportional to the square root of the kinematic viscosity. Hence, in the

simulation of high Reynolds number 
ows, a high density of nodes must be concentrated near the body

surface to capture the viscous e�ects numerically.

It is well known that standard multigrid algorithms su�er from a slow-down in convergence in such an

anisotropic situation (see for example [1, 15]). There are two main approaches to deal with these anisotropic

operators. The �rst approach consists in improving the smoothing process by using an alternating direction

block-implicit smoother [13]. This algorithm explores all the possible directions of coupling of the variables.

On the other hand, the second approach relies on improving the coarse-grid operator. Algorithms like

selective coarsening [7], 
exible multiple semicoarsening [26] or block implicit relaxation combined with

semicoarsening [6], among others, fall into this category. Although these methods have been successfully

applied to fully elliptic equations [17] and the 2-D Navier-Stokes equations [18, 23] their application to the

Navier-Stokes equations in 3-D has been limited.

The simulation analyzed in this work represents an entering 
ow type with the characteristics entering

through one boundary. If the 
ow does not recirculate, downstream marching results in a very e�cient solver

for the convective operator. However, if the main stream velocities are not aligned with the grid lines the

e�ciency of the multigrid method degenerates dramatically. In this case, error components that are much

smoother in the characteristic direction than in others, are not well approximated in coarser grids. The

main reason is the increasing numerical viscosity induced on coarser levels [3, 9]. One way to prevent this
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degradation in convergence is to use block implicit relaxation combined with semicoarsening [8]. This �rst

approach has been applied to the 3-D constant coe�cient convection equation in [14]. When solving the

Navier-Stokes equations it is also possible to use distributive Gauss-Seidel relaxation (DGS) [3, 22]. The

DGS decouples the elliptic component of the system (solved e�ectively by multigrid) from the non elliptic

one which can be solved through marching.

The two problems involved in the simulation studied here, namely boundary layers and non-aligned

grids with open characteristics, have been pointed out as one of the factors that prevent the achievement

of optimal multigrid e�ciencies in CFD codes [2]. Optimal convergence is de�ned as the resolution of the

governing system of equations in a few (less than ten) work units. A work unit is usually de�ned as the

time required to compute the residual of the system in the �nest grid. This property is de�ned by Brandt

as Textbook Multigrid E�ciency (TME) [1]. Another desirable quality of a multigrid solver is its robustness.

The robustness of a smoother is de�ned as its ability to e�ciently solve a wide range of problems. In this

sense the de�nition of robustness is qualitative and has to be de�ned more precisely by setting up a set of

suitable test problems. In the present context we will characterize the multigrid algorithms as robust if the

solution of the governing system of equations can be attained in a �xed amount of work units independent

of the grid size, grid stretching factor and the non-alignment parameter. We will refer to this property as

Textbook Multigrid Convergence (TMC).

The purpose of this work is to present a multigrid algorithm which achieves textbook convergences for

the simulation of the 
ow over a yawed 
at plate. In order to solve the two problems outlined above we

present in section 3 a FMG-FAS multigrid algorithm based on a plane implicit smoother combined with

semicoarsening. The numerical results analyzed in section 4 show that the algorithm used in this work is

fully robust for the model problem considered. In that section, we will also investigate a four color ordering

of planes which enables the parallel implementation of the smoother. The paper ends with some conclusions.

2. Finite Volume Discretization. Let us consider the dimensionless steady state incompressible

Navier-Stokes equations:

(u � r)u = �rp+ 1

Re
�u;

r � u = 0;(2.1)

where u 2 IRe3 = (u; v; w) is the non-dimensional velocity �eld and p is the dimensionless pressure. Re is

the Reynolds number de�ned as Re = U1�L
� , where U1 is a characteristic velocity, L a characteristic length

and � the kinematic viscosity.

The system of non-linear equations 2.1 is discretized over an orthogonally structured grid with a staggered

arrangement of unknowns, where the velocity �eld is de�ned on the control volume faces, and the pressure

�eld at the center (see �gure 2.1). The most important issues of the �nite volume technique will be brie
y

repeated for the u momentum equation. Integration of the convective terms of 2.1 over a control volume

CVijk gives: Z
CVijk

u � ru dV =
X
k

Z
@CVijk

u(u � n) dS =
X
k

mkuk; k = e;w; s; n; t; b;(2.2)

where n is the outward normal vector to the CVijk faces, and the indexes e; w; ::: stand for the usual cardinal

notation (see [10]). As an example, let us consider the east face. For the approximation of the u velocity

an upwind biased de�nition is used, the low order or driver operator used to iterate the solution is a pure
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Fig. 2.1. Placement of the unknowns in the control volume (left-hand chart). Approximation of the velocity at the surface

of the control with the QUICK scheme (right-hand chart).

upwind:

ue =

(
uijk + S+ (u � n)e > 0;

ui+1jk + S� (u � n)e < 0:
(2.3)

where the S� terms corresponds to the contribution of higher order operator corrections. The S� source

terms are calculated, within the multigrid cycle as explained in section 3, using a second order QUICK [12]

scheme. With QUICK, the velocity at the surface of the control volume is interpolated by �tting a parabola

to the values of the velocity at three consecutive nodes: the two nodes located on either side of the surface

of interest, plus the adjacent node in the upstream direction (see �gure 2.1). The mass 
uxes mk can be

easily evaluated using linear weighted interpolation. The rest of the details about the discretization of 2.1

have been discussed in detail in [16].

3. The Multigrid Algorithm. The base solver that we have employed in this work is a full multigrid

FMG algorithm [1]. Let us de�ne a set of grids G = f
k : k = 0; 1; 2; :::; Ng where 
0 is the �nest target
grid and the rest of the grids are obtained by applying some coarsening procedure. In the FMG algorithm

the calculations start on the coarsest grid 
N . Once the problem is solved, the solution is interpolated to

the next �ner level 
N�1 to provide a good initial approximation to the discrete problem on that level. This

procedure is repeated until the �nest grid 
0 is reached. The main goal of a FMG algorithm is to provide

an approximation û0 of the discrete solution u0 up to an algebraic error jjû0�u0jj which is smaller than the

discretization error jju� u0jj.
Because of the non-linearity of the Navier-Stokes equations, each level in the FMG process is solved

with some full approximation scheme (FAS) [1] multigrid cycles. The FAS cycle for a given grid 
n can be

recursively de�ned as follows; let us consider the non-linear discrete problem on 
n:

Lnu
n = fn;(3.1)

After applying �1 iterations of a non-linear smoother to the system 3.1 a new approximation ûn is obtained.

Now, the approximation ûn and the residual rn = fn � Lnû
n are transfered to the next coarser grid 
n+1:

un+1 = In+1n ûn;

rn+1 = In+1n rn;(3.2)

the restriction operators In+1n are discussed below. On the grid 
n+1 the defect equation is solved:

Ln+1û
n+1 = rn+1 + Ln+1u

n+1;
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ûn+1 = un+1 +�un+1;(3.3)

where Ln+1 is some coarse-grid approximation to Ln. Note that in the FAS algorithm we solve for the

full approximation ûn+1 rather than for the correction �un+1. The approximate solution to the coarse-grid

problem 3.3 is obtained in 
 multigrid cycles for the grid 
n+1. When the coarsest level 
N is reached,

the solution to 3.2 is obtained by several relaxation sweeps (�0) of the smoothing process. Once the system

3.3 is solved, the correction �un+1 is transferred back to the �ner grid 
n and added to the �ne-grid

approximation:

ûn  ûn + Inn+1(û
n+1 � un+1);(3.4)

so �2 sweeps of the non-linear smoothing process are applied to the system 3.1, using the new solution ûn

as the initial guess. In algorithm 1 a recursive implementation of the FAS cycle is shown.

Algorithm 1 FAS(�1,�2,
,n) multigrid cycle for a given grid 
n, where �1 and �2 denote the number of pre

and post-smoothing iterations. The cycle type is �xed with 
.

if n=N then

ûN = Smooth(LN ; u
N ; fN ; �0)

else

ûn = Smooth(Ln; u
n; fn; �1)

rn  fn � Lnû
n

rn+1  In+1n rn

un+1  In+1n ûn

fn+1  rn+1 + Ln+1u
n+1

for i = 0 to 
 do

FAS(�1; �2; 
; n+ 1)

end for

ûn  ûn + Inn+1(u
n+1 � ûn+1)

ûn = Smooth(Ln; û
n; fn; �2)

end if

The multigrid cycle is characterized by the number of pre and post-smoothing iterations (�1; �2), and


 which sets the order in which the grids are visited. Depending on 
, the cycle is denoted by V(�1; �2) if


 = 1 and by W(�1; �2) if 
 = 2. We will also consider an F-cycle, which corresponds to an index between

the V and W-cycles, i.e. 1 < 
 < 2. In �gure 3.1 the 
owchart of the cycles used in this work are shown. In

general, a growing 
 implies an increasing complexity [27, 24] and more smoothing sweeps on coarser levels

which harms the parallel properties of the cycle. However, low 
 cycles (i.e., V-cycles) are known to be less

robust than W-cycles, specially in convection dominated problems [18, 3]. This is one of the reasons why in

practice, F-cycles are often used as a trade-o� between V and W-cycles. Note also that using semicoarsening

as de�ned subsequently, the storage requirement of the multigrid algorithm is twice that of the single grid

algorithm.

3.1. Restriction and Prolongation. Solution and residuals transfers are dictated by the staggered

arrangement of unknowns and the coarsening procedure used. In the following we will consider a �ne grid


h de�ned by the nodes:


h = fx 2 IR3 : x = kh; k = (i; j; k); h = (hx; hy; hz); i = 0; :::; nx;
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Fig. 3.1. Scheme of a V-cycle V(�1; �2) (left-hand chart) and an F-cycle F(�1; �2) where �0 represents the number of

iterations of the smoother performed to solve the coarsest level

j = 0; :::; ny; k = 0; :::; nz; hx = 1=nx; hy = 1=ny; hz = 1=nz; g;
and a coarse grid 
h+1 obtained by semicoarsening from 
h. With semicoarsening there is only one direction

in which the mesh space is doubled, let's say for example Hx = 2hx; Hy = hy; Hz = hz or equivalently

Nx = nx=2; Ny = ny; Nz = nz. Hence all Fourier modes in the y and z directions can be exactly represented

on 
h+1 and the smoother has only to damp components of the error oscillating highly in the x direction.

The restriction operator Ihh+1 in equation 3.2 is used to restrict values from the �ne grid 
h to the coarse

grid 
h+1. The component of the velocity parallel to the direction in which the coarsening is performed is

transfered using injection, while the other two components together with the scalar �eld are restricted using

linear weighted interpolation:

(Ih+1h u)2ijk = uijk;

(Ih+1h v)2ijk = (�x�v2ijk + �x+v2i+1jk)=�x;

(Ih+1h w)2ijk = (�x�w2ijk + �x+w2i+1jk)=�x;

(Ih+1h p)2ijk = (�x�p2ijk + �x+p2i+1jk)=�x;

�x = x2i+2jk � x2ijk �x+ = x2i+2jk � x2i+1jk �x� = x2i+1jk � x2ijk ;

8i 2 [0; Nx � 1] 8j 2 [0; Ny � 1] 8k 2 [0; Nz � 1]:

Note that because of the staggered arrangement of unknowns, the velocity component parallel to the coars-

ened direction is treated in a vertex-centered way, while the rest of the variables are transferred as cell-

centered.

The operator Ih+1h in equation 3.4 is used to transfer data from a coarser grid 
h+1 to the �ner 
h. In

this case the prolongation is a weighted linear interpolation for the vertex centered variable:

(Ih+1h u)2ijk = uijk;

(Ih+1h u)2i+1jk = (�x�uijk + �x+ui+1jk)�x;

�x = x2i+1jk � x2i�1jk �x+ = x2i+1jk � x2ijk �x� = x2ijk � x2i�1jk ;

8i 2 [0; Nx � 1] 8j 2 [0; Ny � 1] 8k 2 [0; Nz � 1]:

The cell centered variables are treated using weighted linear interpolation, for example, for the v component

of the velocity �eld we have:

(Ih+1h v)2ijk = (0:5�x+vijk + (�x� + 0:5�x+)vi�1jk)=�x

(Ih+1h v)2i�1jk = ((�x+ + 0:5�x�)vijk + 0:5�x�vi�1jk)=�x

�x = x2i+2jk � x2ijk �x+ = x2i+2jk � x2i+1jk �x� = x2i+1jk � x2ijk ;

8i 2 [0; Nx � 1] 8j 2 [0; Ny � 1] 8k 2 [0; Nz � 1]:
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When values outside the computational domain are needed in the above set of formulas they are extrapolated

from the inner nodes with the help of the boundary condition.

3.2. Smoothing Operator. The present approach uses a coupled smoother where the momentum

and continuity equation are satis�ed simultaneously. In particular, we have chosen a cell-implicit Symmetric

Coupled Gauss Seidel (SCGS) method as the base of the smoothing process. This smoother was introduced

by Vanka [25] and subsequently considered in [23, 16]. In the SCGS the CV are scanned in some prescribed

order, then for each CV the continuity and momentum equations are relaxed as follows:

1. The mass 
uxes of the momentum equations for the six cell faces of the CV are calculated. Also in this

stage the corrections made by the QUICK scheme are updated based on the current approximation.

This is equivalent to a local Picard linearization. Considering implicitly only the diagonals of the

momentum equations and those terms multiplying the pressure inside the CV, we can build the

following system:0BBBBBBBBBB@

(Lu
d)ijk 0 0 0 0 0 1=�x

0 (Lu
d )i+1jk 0 0 0 0 �1=�x

0 0 (Lv
d)ijk 0 0 0 1=�y

0 0 0 (Lv
d)ij+1k 0 0 �1=�y

0 0 0 0 (Lw
d )ijk 0 1=�z

0 0 0 0 0 (Lw
d )ijk+1 �1=�z

�1=�x 1=�x �1=�y 1=�y �1=�z 1=�z 0

1CCCCCCCCCCA

0BBBBBBBBBB@

euijkeui+1jkevijkevij+1kewijkewijk+1epijk

1CCCCCCCCCCA
=

0BBBBBBBBBB@

Ru
ijk

Ru
i+1jk

Rv
ijk

Rv
ij+1k

Rw
ijk

Rw
ijk+1

0

1CCCCCCCCCCA
;

(3.5)

where the Ru;v;w terms represents the contribution of the explicit variables.

2. The system 3.5 is easily solved using Gaussian elimination. A more implicit version of the system

(3.5) that includes o�-diagonal elements in the �rst six rows is also possible, which corresponds to

considering implicitly all the references to unknowns inside the CV. However, the convergence factor

is similar and the system is more expensive to solve than 3.5 [23, 16].

3. The velocity components and the pressure of the CV are updated using under-relaxation:

un+1 = un + !u(eu� un)

pn+1 = pn + !p(ep� pn):

In the following simulations the under-relaxation factors have been �xed as !p = 1:0 and !u = 0:8.

However, in general the optimum values of !u are strongly problem dependent and have to be set

empirically.

3.3. Plane Implicit Smoothers. The use of highly anisotropic grids is common practice in the �eld

of CFD. Grid nodes are usually concentrated in certain regions of the computational domain for accuracy

reasons or to capture small scale physical phenomena such as the boundary layers mentioned before. In some

situations, when the direction of the anisotropies is known beforehand, the multigrid convergence can be

improved using an implicit smoother in the direction of strong coupling of the unknowns [1]. These implicit

solvers have been widely studied in previous work in the simulation of the incompressible Navier-Stokes

equations, see for example [22, 19, 4, 5].

However, if the stretched grid generates aspect ratios whose relative magnitudes vary for di�erent parts

of the computational domain, the multigrid techniques based on block-wise smoothers combined with full

coarsening fail to smooth error components [1, 27]. In these situations, the problem can be e�ectively solved

with a block implicit smoother combined with semicoarsening. In particular, in the following simulations we
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will use an z-semicoarsening (i.e., doubling mesh space only in the z direction as explained in section 3.1)

combined with a xy-plane implicit solver.

From an architectural point of view, it is interesting to note that multigrid methods often reach a disap-

pointingly small percentage of their theoretically available CPU performance due to a limited cache reuse.

Some authors have successfully improved locality using di�erent techniques such as data access transforma-

tions and data layout transformations [21]. Although we have not introduced any of these techniques, we

should remark that plane smoothers exploit blocking in an implicit way, whereas point smoothers have to

perform global sweeps through data sets that are too large to �t in the cache. Despite not having discussed

cache memory exploitation in this paper, in a previous paper [20] we have included a data reuse analysis for

a similar robust multigrid algorithm applied to an anisotropic di�usion equation.

Block implicit smoothers are usually based on a direct solver. These implementations take advantage of

the relatively small size of the corresponding implicitly solved 1-D problem. The 3-D counterpart does not

present this possibility since the size of the 2-D system is no longer small enough to consider a direct solver.

However, an exact direct solver for the planes is not needed, as has been shown in [13] for the 3-D Poisson

equation and in [19] for the incompressible Navier-Stokes equations. This consideration drastically reduces

the computational cost of the overall algorithm compared to that of a direct plane solver.

In the present work, the planes will be approximately solved with a 2-D multigrid algorithm consisting

of one FAS V(1,1) cycle (see �gure 3.1). The same kind of anisotropies found in the 3-D problem may

appear in the 2-D system. Thus a robust multigrid algorithm is, again, necessary. In particular a cell-wise

SCGS smoother described in section 3.2 combined with semicoarsening has been found fully robust for the

simulation of the yawed 
at plate. However, for greater 2-D problem sizes a point-wise smoother may not be

fully robust, and an implicit line smoother or a greater 
 cycle should be used [3, 16]. The other components

of the 2-D multigrid cycle, such as the restriction and prolongation operators or the smoothing process can

be easily deduced from those derived in sections 3.1 and 3.2.

Slab of cells.

Y

X

Z

Fig. 3.2. Slab of cells updated simultaneously when using the xy-plane implicit smoother.

The coupled philosophy of the SCGS will also be applied in the plane solver. The plane smoother

simultaneously relaxes the momentum and continuity equations of the cells included in the plane. Note that

the plane is understood as a slab of cells as shown in �gure 3.2. Hence, all velocity components and pressures

contained within the plane will be updated at the same time. Let us consider for example a yz-plane, for

which the procedure to solve the 2-D problem on the plane is as follows:

1. The mass 
uxes and second-order corrections of the 2-D system are computed based on the current

solution in the plane. This step corresponds to a global linearization of the 2-D problem. Let us

7



de�ne the vector Xi that accommodates the variables for the whole plane of cells as:

XT
i = (u;u+;v;w;p) with

u = fuijk : i = I; 8k; j 2 [0; n]g; u+ = fuijk : i = I + 1; 8k; j 2 [0; n]g;
v = fvijk : i = I; 8k; j 2 [0; n]g; w = fwijk : i = I; 8k; j 2 [0; n]g;
p = fpijk : i = I; 8k; j 2 [0; n]g:

The system of equations for the plane can be written in terms of residuals and corrections as:

Li �Xi = ri;(3.6)

where ri = fi � LiXi is the residual of the i
th yz-plane and �Xi = Xn+1

i �Xn
i is the increment of

the solution.

2. System 3.6 is solved by applying one FAS V(1,1) multigrid cycle as explained before. In the following

simulations the coarsest level is solved with 10 iterations of the smoothing process (�0 = 10).

3. The solution in the plane is updated via underrelaxation:

Xn+1
i = Xn

i + !�Xi;

! = (!u; !u; !u; !u; !p);

where !u and !p are the underrelaxation factors for the velocity and pressure �eld de�ned in section

3.2.

Many types of plane smoothers can be easily constructed by de�ning a speci�c ordering of the planes.

It is important to note that the second order operator extends the stencil to the planes i, i � 1 and i � 2

depending on the direction of the 
ow. In order to avoid these dependencies, the construction of the smoother

can be based on a four color ordering of planes (see �gure 3.3). Because a four color smoother should be

used as the basis of a parallel implementation, the behavior of this smoother will be analyzed and compared

to the sequential lexicographic order in section 4.

1 2 3 4 5 6 7 8 1 3 5 7 2 4 6 8

Four ColorsLexicographic

Fig. 3.3. Planes orderings for the implicit plane smoother.

4. Numerical Experiments. We consider a cascade of square plates of side L as shown in �gure

4.1. In particular, we assume that the leading edge of the plate is placed at a distance L from the in
ow

plane of the computational domain. The out
ow boundary is situated at 2L after the trailing edge. The

boundary conditions are de�ned as follows: on the west face of the computational domain we prescribe

a in
ow conditions consistent with some angle of yaw (�). The north and south faces satisfy a periodic

boundary condition. In order to assure periodicity in the y direction, we will only consider angles of yaw

such that there is no interaction between the wakes of the plates. The largest angle of yaw studied in this

work will be � = 45�. For this situation the wake of the plates (jjujj < 1) at z = 0 has been shaded in �gure

8



4.1. Periodicity in the y direction is clearly shown for this case, and also therefore for the angles 0� � � � 45�

used in the following simulations. Note that for � = 0� the periodic boundary condition reduces to symmetry

on the north and south boundary. On the plate we impose a no-slip condition while the top and bottom

faces will hold symmetric boundary conditions.
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θ
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Fig. 4.1. Schematic con�guration of the numerical experiments (left-hand chart). Periodicity in y-direction for the

simulation of a 
at-plate at � = 45�, the shaded area corresponds to the wake of each plate.

The treatment of the out
ow needs a closer a look since we need to apply a proper boundary condition

in the wake region. For the main stream 
ow we can impose a zero gradient of the velocity �eld in the X

direction:

@U

@X
=

@V

@X
=

@W

@X
= 0:(4.1)

However these equations are not valid in the wake of the plate and need to be improved. In most cases, the


ow in the wake of a plate is turbulent. For Re < 106, under carefully controlled conditions, the boundary

layer can remain laminar past the trailing edge. However because the velocity pro�les in the wake have a

point of in
exion, the wake usually becomes turbulent away from the trailing edge. In this work we will

con�ne Re < 105 and assume that the wake remains laminar at a distance of 2L behind the trailing edge.

For the wake region, the out
ow boundary condition will be derived using Goldstein's calculations of the

velocity distribution in the wake of a �nite 2-D 
at plate [11]. Hence, in order to apply the proper boundary

conditions, it is important to set the wake bounds. We will assume that the wake region has a negligible

thickness, beyond the width of the plate, L=cos(�), in the y direction (�xy � 0), see �gure 4.2. The estimation

of the thickness in the z direction is based on the numerical values [11] of the velocity in the wake at a given

distance behind the plate. In particular, with the out
ow placed at 2L after the trailing edge of the plate,

and �xing the wake limit where jjujj = 0:999, for a Reynolds number of 104, it is found that �xz � 0:1L.
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Fig. 4.2. Wake dimensions of the plate at zero angle of yaw

We will �rst consider the plate at zero angle of yaw. The gradient of the velocity component parallel to

the in
ow velocity, and that perpendicular to the plate, will be improved using Goldstein's calculation for

the 2-D plate. The notation introduced in [11] will be reproduced here in order to clarify the subsequent

expressions:

ReL = U1L=� : Reynolds number based on the plate length

D = 1:328�U2
1L=

p
ReL : Viscous drag coe�cient from Blasius theory

�D = D=�U2
1d : dimensionless drag coe�cient

A = 1:328=4
p
� : Constant of integration

d = 4L : representative length of the plate

X ,Z : 2-D Cartesian coordinates

U ,W : Dimensional 2-D velocity �eld

x = X=d, z = (U1d=�)1=2Z=d : dimensionless coordinates

u = U=U1, w = (U1d=�)1=2W=U1 : dimensionless components of the velocity �eld

In what follows we will only need the component of the velocity perpendicular to the plate which can

be written with a second order approximation as:

w = � Ap
2x

g1(�) +
A

x3=2

�
A

23=2
(g2(�) + g2(�) + g2(�)) +

�p
2�ReL

�
;(4.2)

where:

� =
zp
2x

;

g1(�) = �e�
1

2
�2 ;

g2(�) =

r
�

2
(1� �2)e�

1

2
�2erf(

�p
2
);

g3(�) = ��e��
2

;

g4(�) = �
p
(�)erf(�):(4.3)

The gradient of U in the X direction, will be calculated in terms of the derivative of w with respect to

z. With the help of the mass conservation equation we can express the U derivative as:

@U

@X
= �U1

d

@w

@�

@�

@z
;
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@w

@�

@�

@z
= � A

2x
g1� +

A

(2x)2

�
A (g2� + g2� + g2�) +

2p
�ReL

�
;(4.4)

where the functions gi� are:

g1� = (1� �2)e�
1

2
�2 ;

g2� =

r
�

2
e�

1

2
�2

"
�(�2 � 3)erf

�
�p
2

�
+ (1� �2)

r
2

�
e�

1

2
�2

#
;

g3� = (2�2 � 1)e��
2

;

g4� = �2e��
2

:(4.5)

Although expression 4.1 is probably a good out
ow condition for the W -component we can get a better

representation of the gradient using the derivative of expression 4.2 with respect to X , that can be written

as:

@W

@X
=

U1
2d
p
ReL

�
@w

@x
+
@w

@�

@�

@x

�
;(4.6)

where,

@�

@x
= � �

2x
;

@w

@x
=

A

(2x)3=2
g1� � 3A

(2x)5=2

�
A(g2(�) + g3(�) + g4(�)) +

2�p
�ReL

�
:(4.7)

The bene�ts of the boundary conditions that we have just derived are clearly shown in �gure 4.3. In this

�gure, the pressure contour lines at z = 0 have been plotted for two di�erent simulations with � = 0� and a

Reynolds number of 10000. In the right-hand chart the boundary condition 4.1 has been used for the whole

out
ow boundary. At the out
ow, in the wake of the plate, there is a region of a favorable pressure gradient

that accelerates the velocity at the outlet in order to match the wrong out
ow condition. In the left-hand

chart the boundary conditions 4.4 and 4.6 have been used in the wake region combined with 4.1 outside the

wake. As a result of this boundary condition the low pressure zone in the wake of the plate disappears.
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Fig. 4.3. Pressure contour lines at z=0 for a Reynolds number of 10000 using a zero gradient wake condition (right-hand

chart) and the improved boundary condition (left-hand chart) for � = 0�.
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The solution is veri�ed by comparing the u-velocity in the middle of the plate with the Blasius analytical

solution for a 2-D plate (�gure 4.4). The low discrepancy near the layer edge is due to the highly stretched

grid used in this simulation. The spatial convergence of the viscous drag coe�cient Df versus the nominal

grid spacing for a set of grids with an increasing number of points in the z direction (regular spacing) is

shown in �gure 4.4, where:

Df =

Z
plate

�
@u

@z z=0
dS(4.8)

Second order accuracy is clear; the coe�cient converges to a value approximately 3% lower (Df = 0:020455)

than the one predicted by the Blasius theory (Df = 1:328p
Rel

= 0:02099). It is interesting to note that the

accuracy obtained with the 128�24�32 grid is the same as that obtained with the 32�24�32 stretched grid,

with the consequent saving in computing time.
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Fig. 4.4. Simulation comparison with Blasius theory at the middle of the plate with Re = 104 (left-hand chart). Conver-

gence of the viscous drag versus nominal grid spacing (right-hand chart).

When the in
ow is at some angle of yaw, the out
ow-wake boundary conditions are approximated by

rotating the zero yaw angle solution. This approximation is only valid for moderate angles of yaw, given that

the characteristics of the problem do not diverge too much from the main stream. However, in a general

situation for larger angles of yaw, such as those considered below, this assumption is no longer valid. The

e�ect of the rotated out
ow conditions on the plate has been checked by running a case with the out
ow plane

further out. The 
ow �eld over the plate is not perceptively a�ected by the rotated boundary conditions.

In fact, when comparing both results the di�erence in the 
ow over the plate has been found to be below

the 2%. If we de�ne (x0; y0; z0) as a frame rotated by the angle of yaw �, and, if (u0; v0; w0) are the velocity

components in the (x0; y0; z0) frame we have:

u = u0 cos�+ v0 sin�

v = �u0 sin�+ v0 cos�

w = w0(4.9)

Now, the gradients @U=@X and @W=@X can be easily obtained from equation 4.9. Note also that at yaw,

the e�ective length of the plate changes and so equation 4.2 has to be modi�ed to take this into account.

In �gure 4.5 the drag coe�cient versus the angle of yaw is shown for the 64�48�64 grid with a Reynolds
number of 104. In this case, the contribution from the u and v components of the velocity �eld have to be

12
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Fig. 4.5. Viscous Drag coe�cient versus the angle of yaw for a 64�48�64 stretched grid at Re = 104.

taken into account in the shear stress vector:

Df =

Z
plate

�

�
@u

@z
cos�+

@v

@z
sin�

�
z=0

dS:(4.10)

This integral is computed with second order accuracy using the midpoint rule, where the derivatives are

approximated with a three point formula. The pressure contours at z = 0 for two di�erent angles of yaw

(� = 20� and � = 45�) are shown in �gure 4.6. For these cases, the pressure gradients in the wake of the

plates at the out
ow can also be seen. However, the magnitude of these gradients are small compared to

those that appear at � = 0� and the zero gradient boundary condition for the wake of the plate.
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Fig. 4.6. Pressure contour lines at z=0 for a Reynolds number of 10000 for � = 20� (left-hand chart) and � = 45�

(right-hand chart).

In order to capture the viscous e�ects, the grids used in this work are highly stretched near the plate.

Moreover, the grids are re�ned (geometrically stretched, see below) near the plate edges to reduce the large

discretization errors in those zones as advocated by Thomas et al. [22] (see for example �gure 4.3). The

simulations have been performed over two di�erent grids of dimensions: 32�24�32 and 64�48�64. These
grids use a stretching of the form hk+1 = �hk, the stretching factor � being equal to 1:3 and 1:2 respectively.

It is interesting to note that, in order to keep the h2 solution accuracy the stretching factor should be

� = 1+O(h). In the following simulations the number of multigrid levels has been �xed so that the coarsest

level has 4 planes.
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Figure 4.7 shows the L2-norm of the residual versus F(2,1)-cycles with an xy-plane implicit smoother

combined with Z semicoarsening for several angles of yaw and two di�erent smoothers. The residual norm

is reduced by four orders of magnitude in the �rst �ve cycles in the �nest grid in all cases (corresponding

to a convergence rate of roughly 0.1 per �ne grid iteration). This average convergence rate is close to that

obtained for the 3-D Poisson equation using a plane implicit smoother combined with semicoarsening [17].

Moreover, the convergence rate is also independent of the angle of the non-alignment parameter for angles

0� � � � 45�.
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Fig. 4.7. L2-norm of the average residual versus F(2,1)-cycles with an xy-plane implicit smoother combined with z

semicoarsening with a lexicographic (Lx) and a four-color (Fc) ordering of planes, and several angles of yaw. The Simulation

was performed on a 32�24�32 grid and a Reynolds number of 104.

Figure 4.8 shows the L2-norm of the residual versus F(2,1)-cycles for a 64�48�64 grid. The residual
norm in this case is also reduced by four orders of magnitude in the �rst �ve cycles in the �nest grid in

all cases. Thus, the combination of plane-implicit smoothers with semicoarsening considered here exhibits

a textbook convergence rate, i.e., independent of the problem size, grid stretching factor and angle of yaw.

Although this problem is a convection-dominated non-aligned 
ow for which multigrid schemes might have

convergence di�culties, we do not experience these di�culties for the grids and Reynolds numbers used.

However in a general situation an explicit coarse-grid correction of cross-characteristic components may be

needed (see for example [8]). Moreover, when using a four-color smoother the e�ciency of the algorithm is

not reduced. This result enables a viable parallel implementation of the multigrid algorithm studied.

We have studied the case of Re = 105 and have obtained a convergence rate of 0.2 and a drag coe�cient

within 5% of that predicted by the Blasius solution. The results indicate that a �ner mesh is needed to

improve the accuracy of the results. This will be the subject of further studies that would exploit the
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Fig. 4.8. L2-norm of the average residual versus F(2,1)-cycles with an xy-plane implicit smoother combined with z

semicoarsening with a lexicographic (Lx) and a four-color (Fc) ordering of planes and several angles of yaw. The Simulation

was performed on a 64�48�64 grid and a Reynolds number of 104.

parallel properties of the algorithm.

5. Conclusions. A multigrid algorithm to solve the incompressible 3-D Navier-Stokes equations with

severely stretched grids and non-aligned 
ows has been presented. The core of the multigrid algorithm is

a coupled plane-implicit solver combined with semicoarsening. The plane solver used is also a robust 2-D

multigrid algorithm based on a cell-implicit smoother combined with semicoarsening. This plane smoother

has been found fully robust for the problem sizes covered in this work. Textbook multigrid convergence has

been demonstrated for the simulation of a yawed 
at plate boundary layer. That is, the convergence rate is

independent of the grid size, grid stretching factor and the angle of yaw. Moreover, this convergence factor

has been found to be close to the value expected for elliptic equations. A parallel variant of the smoothing

process based in a four-color ordering of planes has also been analyzed. The convergence rate does not

deteriorate in this situation, achieving TMC for the parallel smoother. The out
ow boundary treatment has

been discussed in depth in this report. The code has been validated with Blasius theory and an accurate

measurement of the viscous drag coe�cient has been obtained by exploiting the robustness of the solver.
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